结论


本研究强调了光和 C. glacialis 新陈代谢的食物。 这两个因素可能 对调节滞育时间具有重要意义 在 C. glacialis。 光似乎对“醒来”的桡足类动物特别重要,而光的缺失或减少 食物最初可能会导致桡足类进入滞育期。 气候引起的光照变化以及初级生产体制很可能会对 C. glacialis 的碳需求,并且很可能会改变 该物种滞育的开始和持续时间以适应 新的初级生产体制。


致谢


我们要感谢 M. Daase、B. Niehoff、K. Bluhme 和 M. Graeve 在此之前和期间提供的宝贵帮助 2009 年的实验,以及 HC Eilertsen 为我们提供的 藻类培养。 本研究由 CLEOPATRA I 项目资助 和 II:气候对食品质量和营养转移的影响 北极边缘冰区(挪威研究委员会,项目 编号 178766/S30 和 216537)和 Kellfrid og Helge Fon(特罗姆瑟大学至新墨西哥州),是对 Arctos 网络的贡献 和 ANR-ECOTAB 项目(11 PDOC 018 01 至 NM)。


参考


Arnkvaern G, Daase M, Eiane K (2005) Dynamics of coexisting Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus populations in a high-Arctic fjord. Polar Biol 28:528–538


Arrigo K, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603


Bamstedt U, Tande KS (1985) Respiration and excretion rates of Calanus glacialis in arctic waters of the Barents Sea. Mar Biol 87:259–266


Blachowiak-Samolyk K, Søreide JE, Kwasniewski S, Sundfjord A, Hop H, Falk-Petersen S, Hegseth EN (2008) Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79–81 N). Deep-Sea Res II 55:2210–2224 Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703 Conover R (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the Northern Hemisphere. Hydrobiologia 167:127–142


Engelsen O, Hegseth EN, Hop H, Hansen E, Falk-Petersen S (2002) Spatial variability of chlorophyll-a in the Marginal Ice Zone of the Barents Sea, with relations to sea ice and oceanographic conditions. J Mar Syst 35:79–97


Falk-Petersen S, Mayzaud P, Kattner G, Sargent J (2009) Lipids and life strategy of Arctic Calanus. Mar Biol Res 5:18–39 Gabrielsen TM, Merkel B, Søreide JE, Johansson-Karlsson E, Bailey A, Vogedes D, Nyga˚rd H, Varpe Ø, Berge J (2012) Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol 35:1621–1628


Gough WA, Cornwell AR, Tsuji LJS (2004) Trends in seasonal sea ice duration in southwestern Hudson Bay. Arct Alp Res 57:299–305


Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invertebr Reprod Dev 36:25–34


Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zool Anal Complex Syst 104:313–326


Hernandez-Leon S, Ikeda T (2005) A global assessment of mesozooplankton respiration in the ocean. J Plankton Res 27:153–158


Hind A, Gurney SC, Heath M, Bryant AD (2000) Overwintering strategies inCalanus finmarchicus. Mar Ecol Prog Ser 193:95–107


Hirche HJ (1983) Overwintering of Calanus finmarchicus and Calanus helgolandicus. Mar Ecol Prog Ser 11:281–290


Hirche HJ (1996) Diapause in the marine copepod, Calanus finmarchicus—a review. Ophelia 44:129–143


Hirche HJ, Kattner G (1993) Egg production and lipid content of Calanus glacialis in Spring—indication of a food dependent and food independent reproductive mode. Mar Biol 117:615–622


Hirche H, Mumm N (1992) Distribution of dominant copepods in the Nansen Basin, Arctic-Ocean, in Summer. Deep-Sea Res I 39:485–505


Holm-Hansen O, Riemann B (1978) Chlorophyll-a determination: improvements in methodology. Oikos 30:438–447


Ikeda T, Skjoldal HR (1989) Metabolism and elemental composition of zooplankton from the Barents Sea during early Arctic summer. Mar Biol 100:173–183


Ikeda T, Kano Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139:587–596


Kahru M, Brotas W, Manzano-Sarabia M, Mitchel BG (2011) Are phytoplankton blooms occurring earlier in the Arctic? Glob Chang Biol 17:1722–1739


Kosobokova KN (1999) The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biol 22:254–263


Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306


Leu E, Falk-Petersen S, Kwasniewski S, Wulff A, Edvardsen K, Hessen DO (2006) Fatty acid dynamics during the spring bloom in a High Arctic fjord: importance of abiotic factors versus community changes. Can J Fish Aquat Sci 63:2760–2779


Leu E, Wiktor J, Soreide JE, Berge J, Falk-Petersen S (2010) Increased irradiance reduces food quality of sea ice algae. Mar Ecol-Prog Ser 411:49–60


Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog Oceanog 90:18–32


Maps F, Plourde S, Zakardjian B (2010) Control of dormancy by lipid metabolism in Calanus finmarchicus: a population model test. Mar Ecol Prog Ser 403:165–180


Miller CB, Crain JA, Morgan CA (2000) Oil storage variability in Calanus finmarchicus. ICES J Mar Sci 57:1786–1799


Perrette M, Yool A, Quartly GD, Popova EE (2011) Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 8:515–524


Polyakov IV, Timokov LA, Alexeev VA, Bacon S, Dimitrenko IA, Fortier L, Frolov IE, Gascard J-C, Hansen E, Ivanov VV et al (2010) Arctic Ocean warming contributes to reduced Polar ice cap. J Phys Oceanogr 40:743–756


Renaud PE, Riedel A, Michel C, Morata N, Gosselin M, JuulPedersen T, Chiuchiolo A (2007) Seasonal variation in benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic? J Mar Syst 67:1–12


Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic seaice cover. Geophys Res Lett 26:3469–3472 Seuthe L, Darnis G, Wexels Riser C, Wassmann P, Fortier L (2007) Winter–spring feeding and metabolism of Arctic copepods: insights from faecal pellet production and respiration measurements in the southeastern Beaufort Sea. Polar Biol 30:427–436


Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. DeepSea Res II 55:2225–2244


Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163


Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502


Takahashi K, Nagao N, Taguchi S (2002) Respiration of adult female Calanus hyperboreus (Copepoda) during spring in the North Water Polynya. Polar Biosci 15:45–51


Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø (2009) The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118:363–370


Wassmann P, Duarte CM, Agusti A, Sejr M (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Chang Biol 17:1235–1429


光和食物对北极桡足类冰壳动物新陈代谢的影响——摘要、介绍

光和食物对北极桡足类冰壳动物新陈代谢的影响——材料和方法

光和食物对北极桡足类冰壳动物新陈代谢的影响——结果

光和食物对北极桡足类冰壳动物新陈代谢的影响——结论、致谢!