热线:021-56056830,66110819
手机:13564362870
热线:021-56056830,66110819
手机:13564362870
结论
在沿海栖息地环境条件波动,在所有少数现存调查中,与恒定条件相比,在存在波动的情况下,目标物种受到不同的影响。 无视我们研究中的自然波动,加上我们通常的实验方法的其他局限性(图 1),会大大削弱我们见解的相关性。 毫无疑问,我们收集了大量关于海洋急性酸化影响的信息。 为了将这些整理成一幅连贯而真实的图片,我们需要:(1) 将这些知识输入到描述性模型中,以及 (2) 进行更全面的多因素或多变量调查,包括频率和幅度自然尺度的驱动波动。 在可能的情况下,此类调查应足够长,以便适应或适应目标物种、它们相关的微生物组以及它们与社区中其他物种的相互作用。 一种有希望的方法是对中宇宙系统中的海洋酸化(或许多其他生态问题)进行调查,正如斯图尔特等人所请求的那样。 (2013) 和加图索等人。 (2014)。 例如,一年多来,我们在一系列大型中世界('Kiel Benthocosms':图 6)中进行了一项关于近自然条件下全球变化效应的实验。 该社区是一个膀胱残骸组合,包括大型藻类、它们的微型和大型表皮生物、中食草动物、海星、贻贝、鱼类,它们以自然比例移植到底栖动物中。 驱动因素(温度、酸化、营养、缺氧)作为增量处理应用,即作为环境条件的附加物。 delta 处理的值对应于直到 2100 年均值变化的预测——只要这种预测存在于区域尺度。 由底栖动物群落的新陈代谢和基尔峡湾(德国)水的生物学和水文学驱动的波动,以贯穿模式喂养底栖动物,是自由承认的。 实验持续时间涵盖所有季节。 反应是在物种和群落层面进行记录的,从而整合了不同个体发育阶段、不同物种及其相互转移的水平的反应。 通过这种方法,我们希望提高我们了解全球变化如何影响自然环境中的物种、由这些物种组成的群落以及它们提供的生态系统服务的能力。 尽管这些底栖动物在概念上相当先进,但它们仍然有其局限性。 因此,某些生物,例如翼足类、鱼类和海带,由于尚不清楚的原因,只能保持良好的生理状态3-6 个月。 必须控制或考虑“壁效应”,即微生物群和丝状藻类的生长增强。 微观世界的实验室实验对于阐明单一和孤立的影响始终很重要,而现场实验可用于验证底栖动物的结果。 所有三种方法的互补使用,强调创新的中观系统,允许多因素处理、多物种响应和自然波动的结合,对于实现对沿海栖息地未来 OA 影响的现实认识是必要的。
图 6. Kiel Benthocosms:在两种温度状态(环境为 D08,温暖或“未来”为 Dþ58C)和两种酸化状态(低 pCO2 或“环境”在 400 matm(浅灰色下曲线)下的波动 Delta pH 处理;底栖动物带帽顶空处的高 pCO2 或“未来”为 1100 matm(深灰色上部曲线))。 快速振荡(由垂直黑线表示的高 pCO2 状态的振幅)是生物信号,可归因于底栖动物群落光合作用和呼吸的昼夜节律变化。 黑色虚线表示基尔峡湾 pH 值的季节性下降。 双头箭头表示顶空 pCO2 处理对底栖动物 pH 值的影响。 尽管在顶部空间空气的 pCO2 增强中应用了相同的处理强度,但这意味着较低温度下的 pH 值差异较小。 pH 值的生物源昼夜波动在较冷的区域也具有较小的幅度。
如果没有将我们的实验方法升级到更复杂和更“真实”的水平,我们就会陷入一个德国笑话中描述的情况:一个男人在晚上在路灯下寻找丢失的钥匙。 一位乐于助人的路人很快加入了他的努力。 经过 30 分钟的搜索未果,帮手问这位不幸的人是否真的确定他在这个地方丢失了他的钥匙。 那人回答说:“不,不,我在街角丢了它们,但那里没有路灯,在这里我们可以看到的地方搜索要方便得多”。
致谢 我们非常感谢 Christopher Cornwall(澳大利亚珀斯大学)对本文早期版本的宝贵意见。 两位匿名审稿人和编辑史蒂夫霍金斯的评论和建议极大地改进了本文的实质和风格。 我们非常感谢他们的努力。
References
Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., and
Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification
on coral reefs. Biogeosciences Discussions 10, 1831–1865.
doi:10.5194/BGD-10-1831-2013
Appelhans, Y. S., Thomsen, J., Pansch, C., Melzner, F., and Wahl, M.
(2012). Sour times: seawater acidification effects on growth, feeding
behaviour and acid-base status of Asterias rubens and Carcinus maenas.
Marine Ecology Progress Series 459, 85–98. doi:10.3354/MEPS09697
Appelhans, J. S., Thomsen, J., Opitz, S., Pansch, C., Melzner, F., and Wahl,
M. (2014). Juvenile sea stars exposed to acidification decrease feeding
and growth with no acclimation potential. Marine Ecology Progress
Series 509, 227–239. doi:10.3354/MEPS10884
Bates, N. R., and Leone, S. (2001). Biogeochemical and physical factors
influencing seawater fCO2 and air–sea CO2 exchange on the Bermuda
coral reef. Limnology and Oceanography 46, 833–846. doi:10.4319/LO.
2001.46.4.0833
Buapet, P., Gullstro¨m, M., and Bjo¨rk, M. (2013). Photosynthetic activity of
seagrasses and macroalgae in temperate shallow waters can alter
seawater pH and total inorganic carbon content at the scale of a coastal
embayment. Marine and Freshwater Research 64, 1040–1048.
doi:10.1071/MF12124
Byrne, M., and Przeslawski, R. (2013). Multistressor impacts of warming
and acidification of the ocean on marine invertebrates’ life histories.
Integrative and Comparative Biology 53, 582–596. doi:10.1093/ICB/
ICT049
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R.C. (2014). Diel
pCO2 oscillations modulate the response of the coral Acropora hyacinthus
to ocean acidification. Marine Ecology Progress Series 501,
99–111. doi:10.3354/MEPS10690
Connell, S. D., and Russell, B. D. (2010). The direct effects of increasing
CO2 and temperature on non-calcifying organisms: increasing the
potential for phase shifts in kelp forests. Proceedings of the Royal
Society of London – B. Biological Sciences 277, 1409–1415.
doi:10.1098/RSPB.2009.2069
Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B.
D. (2013). The other ocean acidification problem: CO2 as a resource
among competitors for ecosystem dominance. Philosophical Transactions
of the Royal Society of London – B. Biological Sciences 368,
20120442. doi:10.1098/RSTB.2012.0442
Cornwall, C. E., Hepburn, C. D., Pilditch, C. A., and Hurd, C. L. (2013).
Concentration boundary layers around complex assemblages of macroalgae:
implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography 58, 121–130.
doi:10.4319/LO.2013.58.1.0121
Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C.
A., Morris, J. N., Smith, A. M., and Hurd, C. L. (2014). Diffusion
boundary layers ameliorate the negative effects of ocean acidification on
the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE
9, e97235. doi:10.1371/JOURNAL.PONE.0097235
Daniel, M. J., and Boyden, C. R. (1975). Diurnal variations in physicochemical
conditions within intertidal rockpools. Field Studies 4, 161–176.
Delille, B., Delille, D., Fiala, M., Prevost, C., and Frankignoulle, M. (2000).
Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed.
Polar Biology 23, 706–716. doi:10.1007/S003000000142
Delille, B., Borges, A. V., and Delille, D. (2009). Influence of giant kelp beds
(Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the
Sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science 81,
114–122. doi:10.1016/J.ECSS.2008.10.004
Drupp, P., De Carlo, E., Mackenzie, F., Bienfang, P., and Sabine, C. (2011).
Nutrient inputs, phytoplankton response, and CO2 variations in a
semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquatic
Geochemistry 17, 473–498. doi:10.1007/S10498-010-9115-Y
Drupp, P. S., De Carlo, E. H., Mackenzie, F. T., Sabine, C. L., Feely, R. A.,
and Shamberger, K. E. (2013). Comparison ofCO2 dynamics and air–sea
gas exchange in differing tropical reef environments. Aquatic Geochemistry
19, 371–397. doi:10.1007/S10498-013-9214-7
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A.,
Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M. (2013).
Is ocean acidification an open-ocean syndrome? Understanding anthropogenic
impacts on seawater pH. Estuaries and Coasts 36, 221–236.
doi:10.1007/S12237-013-9594-3
Duarte, C., Navarro, J., Acuna, K., Torres, R., Manriquez, P., Lardies, M.,
Vargas, C., Lagos, N., and Aguilera, V. (2014). Combined effects of
temperature and ocean acidification on the juvenile individuals of the
mussel Mytilus chilensis. Journal of Sea Research 85, 308–314.
doi:10.1016/J.SEARES.2013.06.002
Dufault, A. M., Cumbo, V. R., Fan, T.-Y., and Edmunds, P. J. (2012). Effects
of diurnally oscillating pCO2 on the calcification and survival of
coral recruits. Proceedings. Biological Sciences 279, 2951–2958.
doi:10.1098/RSPB.2011.2545
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.
(2008). Evidence for upwelling of corrosive ‘acidified’ water onto the
continental shelf. Science 320, 1490–1492. doi:10.1126/SCIENCE.
1155676
Forsgren, E., Dupont, S., Jutfelt, F., and Amundsen, T. (2013). ElevatedCO2
affects embryonic development and larval phototaxis in a temperate
marine fish. Ecology and Evolution 3, 3637–3646. doi:10.1002/
ECE3.709
Frankignoulle, M. (1988). Field measurements of air–sea CO2 exchange.
Limnology and Oceanography 33, 313–322. doi:10.4319/LO.1988.
33.3.0313
Frankignoulle, M., and Bouquegneau, J. M. (1990). Daily and yearly
variations of total inorganic carbon in a productive coastal area. Estuarine,
Coastal and Shelf Science 30, 79–89. doi:10.1016/0272-7714(90)
90078-6
Frankignoulle, M., and Diste`che, A. (1984). CO2 chemistry in the water
column above a Posidonia seagrass bed and related air–sea exchanges.
Oceanologica Acta 7, 209–219.
Frieder, C. A., Nam, S. H., Martz, T. R., and Levin, L. A. (2012). High
temporal and spatial variability of dissolved oxygen and pH in
a nearshore California kelp forest. Biogeosciences 9, 3917–3930.
doi:10.5194/BG-9-3917-2012
Frieder, C. A., Gonzalez, J. P., Bockmon, E. E., Navarro, M. O., and Levin,
L. A. (2014). Can variable pH and low oxygen moderate ocean
acidification outcomes for mussel larvae? Global Change Biology 20,
754–764. doi:10.1111/GCB.12485
Gattuso, J.-P., Kirkwood, W., Barry, J. P., Cox, E., Gazeau, F., Hansson, L.,
Hendriks, I., Kline, D. I., Mahacek, P., Martin, S., McElhany, P., Peltzer,
E. T., Reeve, J., Roberts, D., Saderne, V., Tait, K., Widdicombe, S., and
Brewer, P. G. (2014). Free-ocean CO2 enrichment (FOCE) systems:
present status and future developments Biogeosciences 11, 4057–4075.
doi:10.5194/BG-11-4057-2014
Gray, S. E. C., DeGrandpre, M. D., Langdon, C., and Corredor, J. E. (2012).
Short-term and seasonal pH, pCO2 and saturation state variability in a
coral-reef ecosystem. Global Biogeochemical Cycles 26, GB3012.
doi:10.1029/2011GB004114
Griffin,N., andDurako,M. (2012). The effect of pulsed versus gradual salinity
reduction on the physiology and survival ofHalophila johnsonii Eiseman.
Marine Biology 159, 1439–1447. doi:10.1007/S00227-012-1923-8
Hadfield, M. G., and Strathmann, M. F. (1996). Variability, flexibility and
plasticity in life histories of marine invertebrates. Oceanologica Acta 19,
323–334.
Helbling, E. W., Carrillo, P., Medina-Sanchez, J. M., Duran, C., Herrera, G.,
Villar-Argaiz, M., and Villafane, V. E. (2013). Interactive effects of
vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic
responses of phytoplankton from high mountain lakes in southern
Europe. Biogeosciences 10, 1037–1050. doi:10.5194/BG-10-1037-2013
Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore,
T. S., Howard, J., and Duarte, C. M. (2014). Photosynthetic activity
buffers ocean acidification in seagrass meadows. Biogeosciences 11,
333–346. doi:10.5194/BG-11-333-2014
Hiebenthal, C., Philipp, E., Eisenhauer, A., and Wahl, M. (2013). Effects of
seawater pCO2 and temperature on shell growth, shell stability, condition
and cellular stress of western Baltic Sea Mytilus edulis (L.) and
Arctica islandica (L.). Marine Biology 160, 2073–2087. doi:10.1007/
S00227-012-2080-9
Hofmann,G. E., Smith, J.E., Johnson,K. S., Send,U.,Levin,L.A.,Micheli, F.,
Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G.,
Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A.,
Yu, P. C., and Martz, T. R. (2011). High-frequency dynamics of ocean
pH: a multi-ecosystem comparison. PLoS ONE 6, e28983. doi:10.1371/
JOURNAL.PONE.0028983
Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and
production. Journal of Phycology 36, 453–472. doi:10.1046/J.1529-
8817.2000.99139.X
Hurd, C. L., and Pilditch, C. A. (2011). Flow-induced morphological
variations affect diffusion boundary-layer thickness of Macrocystis
pyrifera (Heterokontophyta, Laminariales). Journal of Phycology 47,
341–351. doi:10.1111/J.1529-8817.2011.00958.X
Hurd, C. L., Hepburn, C. D., Currie, K. I., Raven, J. A., and Hunter, K. A.
(2009). Testing the effects of ocean acidification on algal metabolism:
considerations for experimental designs. Journal of Phycology 45,
1236–1251. doi:10.1111/J.1529-8817.2009.00768.X
Johnson, V. R., Brownlee, C., Rickaby, R. E. M., Graziano, M., Milazzo, M.,
and Hall-Spencer, J. M. (2013). Responses of marine benthic microalgae
to elevated CO2. Marine Biology 160, 1813–1824. doi:10.1007/S00227-
011-1840-2
Kim, T. W., Barry, J. P., and Micheli, F. (2013). The effects of intermittent
exposure to low-pH and low-oxygen conditions on survival and growth
of juvenile red abalone. Biogeosciences 10, 7255–7262. doi:10.5194/
BG-10-7255-2013
Koch, M., Bowes, G., Ross, C., and Zhang, X.-H. (2013). Climate change
and ocean acidification effects on seagrasses and marine macroalgae.
Global Change Biology 19, 103–132. doi:10.1111/J.1365-2486.2012.
02791.X
Kulin´ski, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull, D.
(2014). The influence of dissolved organic matter on the acid–base
system of the Baltic Sea. Journal of Marine Systems 132, 106–115.
doi:10.1016/J.JMARSYS.2014.01.011
Kurihara, H., Yin, R., Nishihara, G., Soyano, K., and Ishimatsu, A. (2013).
Effect of ocean acidification on growth, gonad development and
physiology of the sea urchin Hemicentrotus pulcherrimus. Aquatic
Biology 18, 281–292. doi:10.3354/AB00510
Lohbeck, K., Riebesell, U., Collins, S., and Reusch, T. (2013). Functional
genetic divergence in high CO2 adapted Emiliania huxleyi populations.
Evolution 67, 1892–1900. doi:10.1111/J.1558-5646.2012.01812.X
Low-De´carie, E., Fussmann, G., and Bell, G. (2011). The effect of elevated
CO2 on growth and competition in experimental phytoplankton communities.
Global Change Biology 17, 2525–2535. doi:10.1111/J.1365-
2486.2011.02402.X
Manzello, D. P. (2010). Ocean acidification hot spots: spatiotemporal
dynamics of the seawater CO2 system of eastern Pacific coral reefs.
Limnology and Oceanography 55, 239–248. doi:10.4319/LO.2010.55.1.
0239
Massaro, R. S., De Carlo, E., Drupp, P., Mackenzie, F., Jones, S.,
Shamberger, K., Sabine, C., and Feely, R. (2012). Multiple factors
driving variability of CO2 exchange between the ocean and atmosphere
in a tropical coral reef environment. Aquatic Geochemistry 18, 357–386.
doi:10.1007/S10498-012-9170-7
McCoy, S. (2013). Morphology of the crustose coralline alga Pseudolithophyllum
muricatum (Corallinales, Rhodophyta) responds to 30 years of
ocean acidification in the northeast Pacific. Journal of Phycology 49,
830–837.
Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A.,
Bange, H. W., Hansen, H. P., and Kortzinger, A. (2013). Future ocean
acidification will be amplified by hypoxia in coastal habitats. Marine
Biology 160, 1875–1888. doi:10.1007/S00227-012-1954-1
Middelboe, A. L., and Hansen, P. J. (2007). High pH in shallow-water
macroalgal habitats. Marine Ecology Progress Series 338, 107–117.
doi:10.3354/MEPS338107
Miller, G., Watson, S., Donelson, J., McCormick, M., and Munday, P.
(2012). Parental environment mediates impacts of increased carbon
dioxide on a coral reef fish. Nature Climate Change 2, 858–861.
doi:10.1038/NCLIMATE1599
Miller-Neilan, R., and Rose, K. (2014). Simulating the effects of fluctuating
dissolved oxygen on growth, reproduction, and survival of fish and
shrimp. Journal of Theoretical Biology 343, 54–68. doi:10.1016/J.JTBI.
2013.11.004
Morris, S., and Taylor, A. C. (1983). Diurnal and seasonal variation in
physico-chemical conditions within intertidal rock pools. Estuarine,
Coastal and Shelf Science 17, 339–355. doi:10.1016/0272-7714(83)
90026-4
Nguyen, H. D., and Byrne, M. (2014). Early benthic juvenile Parvulastra
exigua (Asteroidea) are tolerant to extreme acidification and warming in
its intertidal habitat. Journal of Experimental Marine Biology and
Ecology 453, 36–42. doi:10.1016/J.JEMBE.2013.12.007
Ohde, S., and van Woesik, R. (1999). Carbon dioxide flux and metabolic
processes of a coral reef, Okinawa. Bulletin of Marine Science 65,
559–576.
Pansch, C., Nasrolahi, A., Appelhans, J. S., and Wahl, M. (2012). Impacts
of ocean warming and acidification on the larval development of
the barnacle Amphibalanus improvises. Journal of Experimental
Marine Biology and Ecology 420–421, 48–55. doi:10.1016/J.JEMBE.
2012.03.023
Pansch, C., Schaub, I., Havenhand, J., and Wahl, M. (2014). Habitat traits
and food availability determine the response of marine invertebrates to
ocean acidification. Global Change Biology 20, 765–777. doi:10.1111/
GCB.12478
Price, N. N., Martz, T. R., Brainard, R. E., and Smith, J. E. (2012). Diel
variability in seawater pH relates to calcification and benthic community
structure on coral reefs. PLoS ONE 7, e43843. doi:10.1371/JOURNAL.
PONE.0043843
Putnam, H. M., and Edmunds, P. J. (2011). The physiological response of
reef corals to diel fluctuations in seawater temperature. Journal of
Experimental Marine Biology and Ecology 396, 216–223. doi:10.1016/
J.JEMBE.2010.10.026
Saderne, V., and Wahl, M. (2013). Differential responses of calcifying and
non-calcifying epibionts of a brown macroalga to present-day and future
upwelling pCO2. PLoS ONE 8, e70455. doi:10.1371/JOURNAL.PONE.
0070455
Saderne, V., Fietzek, P., and Herman, P. M. J. (2013). Extreme variations of
pCO2 and pH in a macrophyte meadow of the baltic sea in summer:
evidence of the effect of photosynthesis and local upwelling. PLoS ONE
8, e62689. doi:10.1371/JOURNAL.PONE.0062689
Schulz, K. G., and Riebesell, U. (2013). Diurnal changes in seawater
carbonate chemistry speciation at increasing atmospheric carbon dioxide.
Marine Biology 160, 1889–1899. doi:10.1007/S00227-012-1965-Y
Semesi, I. S., Beer, S., and Bjo¨rk, M. (2009). Seagrass photosynthesis
controls rates of calcification and photosynthesis of calcareous macroalgae
in a tropical seagrass meadow. Marine Ecology Progress Series
382, 41–48. doi:10.3354/MEPS07973
Shashar, N., Kinane, S., Jokiel, P. L., and Patterson, M. R. (1996). Hydromechanical
boundary layers over a coral reef. Journal of Experimental
Marine Biology and Ecology 199, 17–28. doi:10.1016/0022-0981(95)
00156-5
Shaw, E. C., McNeil, B. I., and Tilbrook, B. (2012). Impacts of ocean
acidification in naturally variable coral reef flat ecosystems. Journal of
Geophysical Research: Oceans 117, C03038. doi:10.1029/2011JC007655
Soares, H. C., Marcolino Gherardi, D. F., Pezzi, L. P., Kayano, M. T., and
Paes, E. T. (2014). Patterns of interannual climate variability in large
marine ecosystems. Journal of Marine Systems 134, 57–68. doi:10.1016/
J.JMARSYS.2014.03.004
Spilling, K., Titelman, J., Greve, T. M., and Ku¨ hl, M. (2010). Microsensor
measurements of the external and internal microenvironment of Fucus
vesiculosus (Phaeophyceae). Journal of Phycology 46, 1350–1355.
doi:10.1111/J.1529-8817.2010.00894.X
Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L.,
Ledger,M. E.,Meerhoff,M.,Moss,B.,Mulder,C., Shurin, J.B., Suttle,B.,
Thompson, R., Trimmer, M., and Woodward, G. (2013). Mesocosm
experiments as a tool for ecological climate-change research. Advances
in Ecological Research 48, 71–181. doi:10.1016/B978-0-12-417199-2.
00002-1
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds) (2013). Summary
for Policymakers. In ‘Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change’. pp. 3–29. (Cambridge
University Press: Cambridge, UK, and New York.)
Thomsen, J., Gutowska, M. A., Saphoerster, J., Heinemann, A., Truebenbach,
K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Koertzinger, A.,
Wahl, M., and Melzner, F. (2010). Calcifying invertebrates succeed in a
naturally CO2-rich coastal habitat but are threatened by high levels of
future acidification. Biogeosciences 7, 3879–3891. doi:10.5194/BG-7-
3879-2010
Truchot, J. P., and Duhamel-Jouve, A. (1980). Oxygen and carbon dioxide in
the marine intertidal environment: diurnal and tidal changes in rockpools.
Respiration Physiology 39, 241–254. doi:10.1016/0034-5687(80)
90056-0
Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G.,
McCann, K. S., Savage, V., Tunney, T. D., and O’Connor, M. I. (2014).
Increased temperature variation poses a greater risk to species than
climate warming. Proceedings of the Royal Society B: Biological
Sciences 281. doi:10.1098/RSPB.2013.2612
Wahl, M., Jormalainen, V., Eriksson, B. K., Coyer, J. A., Molis, M.,
Schubert, H., Dethier, M., Karez, R., Kruse, I., Lenz, M., Pearson, G.,
Rohde, S., Wikstrom, S. A., and Olsen, J. L. (2011). Stress ecology
in Fucus: abiotic, biotic and genetic interactions. In ‘Advances in
Marine Biology’. (Ed. M. Lesser.) Vol 59, Book 59. (Academic Press:
Oxford, UK.)
Waldbusser, G. G., and Salisbury, J. E. (2014). Ocean acidification in the
coastal zone froman organism’s perspective:multiple systemparameters,
frequency domains, and habitats. Annual Review of Marine Science 6,
221–247. doi:10.1146/ANNUREV-MARINE-121211-172238
Wootton, J. T., Pfister, C. A., and Forester, J. D. (2008). Dynamic patterns
and ecological impacts of declining ocean pH in a high-resolution multiyear
dataset. Proceedings of the National Academy of Sciences of the
United States of America 105, 18848–18853. doi:10.1073/PNAS.
0810079105
Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B. (2007).
Diurnal variation of oxygen and carbonate system parameters in Tampa
Bay and Florida Bay. Marine Chemistry 104, 110–124. doi:10.1016/
J.MARCHEM.2006.12.008