热线:021-66110819,13564362870
Email:info@vizai.cn
热线:021-66110819,13564362870
Email:info@vizai.cn
本研究的结果表明,当存在一个以上的电子受体时,生物膜中的呼吸和代谢生理分层情况。 虽然苋菜红还原与阳极竞争电子,但脱色链球菌菌株S12同时与阳极和苋菜红呼吸。 此外,MFCs阳极室中出现了空间分离的呼吸模式。 浮游细胞和外层生物膜细胞倾向于使用苋菜红作为电子受体,而内层生物膜细胞倾向于使用阳极作为电子受体。 与仅用阳极呼吸的生物膜相比,额外的苋菜红呼吸驱散了生物膜中的质子积累。 阳极呼吸生物膜的氧化还原电位呈现先降低后升高的趋势,这与其介质占主导地位的性质相一致。 额外的苋菜呼吸对生物膜电位影响较小,但阳极电位显着降低。 与使用唯一电子受体呼吸的生物膜相比,由于生物膜内的双向呼吸电子转移,同时使用苋菜红和阳极呼吸的生物膜中观察到更高和更均匀的活性分布。 虽然苋菜红还原与阳极竞争电子,但脱色链球菌菌株S12同时与阳极和苋菜红呼吸。此外,MFCs阳极室中出现了空间分离的呼吸模式。浮游细胞和外层生物膜细胞倾向于使用苋菜红作为电子受体,而内层生物膜细胞倾向于使用阳极作为电子受体。与仅用阳极呼吸的生物膜相比,额外的苋菜红呼吸驱散了生物膜中的质子积累。阳极呼吸生物膜的氧化还原电位呈现先降低后升高的趋势,这与其介质占主导地位的性质相一致。额外的苋菜呼吸对生物膜电位影响较小,但阳极电位显著降低。与使用唯一电子受体呼吸的生物膜相比,由于生物膜内的双向呼吸电子转移,同时使用苋菜红和阳极呼吸的生物膜中观察到更高和更均匀的活性分布。
关联内容
支持信息
图S1 − S7。 此材料可通过互联网免费获取,网址为 http://pubs.acs.org.
作者信息
通讯作者
*电话:+862087684471。 传真:+862087684587。 电邮: xumy@gdim.cn.
作者贡献
Y.Y.,M.X.和G.S.设计了实验。 Y.Y.和Y.X.进行了实验。 Y.Y.,W.-M.W.,和M.X.分析数据并撰写手稿。
笔记
作者声明没有相互竞争的经济利益。
我们感谢Joy D.Van Nostrand博士对语言修订的热情帮助。 本研究得到中国国家基础研究计划(973计划)(2012CB22307)、中国广东自然科学基金(S2013010014596)、国家自然科学基金(51422803, 31200096)、广东科学院优秀学者课题(RCJJ201502)的资助。 广东省海洋经济区域创新发展示范项目(GD2012-D01-002)。
(1) Kato, S.; Hashimoto, K.; Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (25), 10042−10046.
(2) Pfeffer, C.; Larsen, S.; Song, J.; Dong, M.; Besenbacher, F.; Meyer, R. L.; Kjeldsen, K. U.; Schreiber, L.; Gorby, Y. A.; El-Naggar, M. Y.; Leung, K. M.; Schramm, A.; Risgaard-Petersen, N.; Nielsen, L. P. Filamentous bacteria transport electrons over centimetre distances. Nature 2012, 491 (7423), 218−221.
(3) Cunningham, J. A.; Rahme, H.; Hopkins, G. D.; Lebron, C.; Reinhard, M. Enhanced in situ bioremediation of BTEX contaminated groundwater by combined injection of nitrate and sulfate. Environ. Sci. Technol. 2001, 35 (8), 1663−1670.
(4) Finneran, K. T.; Lovley, D. R. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ. Sci. Technol. 2001, 35 (9), 1785−1790.
(5) Xu, M.; Zhang, Q.; Xia, C.; Zhong, Y.; Sun, G.; Guo, J.; Yuan, T.; Zhou, J.; He, Z. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 2014, 8 (9), 1932−1944.
(6) Tender, L. M.; Reimers, C. E.; Stecher, H. A.; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20 (8), 821−825.
(7) Donovan, C.; Dewan, A.; Heo, D.; Beyenal, H. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol. 2008, 42 (22), 8591−8596.
(8) Morris, J. M.; Jin, S. Influence of NO3 and SO4 on power generation from microbial fuel cells. Chem. Eng. J. 2009, 153 (1−3), 127−130.
(9) Yang, Y.; Xiang, Y.; Xia, C.; Wu, W. M.; Sun, G.; Xu, M. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. Bioresour. Technol. 2014, 164, 270−275.
(10) Parameswaran, P.; Torres, C. I.; Lee, H. S.; Krajmalnik-Brown, R.; Rittmann, B. E. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron Balances. Biotechnol. Bioeng. 2009, 103 (3), 513−523.
(11) Huang, L. P.; Gan, L. L.; Wang, N.; Quan, X.; Logan, B. E.; Chen, G. H. Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnol. Bioeng. 2012, 109 (9), 2211−2221.
(12) Wu, D.; Xing, D.; Lu, L.; Wei, M.; Liu, B.; Ren, N. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresour. Technol. 2013, 135, 630−634.
(13) Snider, R. M.; Strycharz-Glaven, S. M.; Tsoi, S. D.; Erickson, J. S.; Tender, L. M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (38), 15467−15472.
(14) Malvankar, N. S.; Vargas, M.; Nevin, K. P.; Franks, A. E.; Leang, C.; Kim, B.-C.; Inoue, K.; Mester, T.; Covalla, S. F.; Johnson, J. P.; Rotello, V. M.; Tuominen, M. T.; Lovley, D. R. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nano 2011, 6 (9), 573−579.
(15) Strycharz-Glaven, S. M.; Snider, R. M.; Guiseppi-Elie, A.; Tender, L. M. On the electrical conductivity of microbial nanowires and biofilms. Energy Environ. Sci. 2011, 4 (11), 4366−4379.
(16) Renslow, R. S.; Babauta, J. T.; Dohnalkova, A. C.; Boyanov, M. I.; Kemner, K. M.; Majors, P. D.; Fredrickson, J. K.; Beyenal, H. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy Environ. Sci. 2013, 6 (6), 1827−1836.
(17) Babauta, J. T.; Nguyen, H. D.; Beyenal, H. Redox and pH Microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ. Sci. Technol. 2011, 45 (15), 6654−6660.
(18) Babauta, J. T.; Nguyen, H. D.; Harrington, T. D.; Renslow, R.; Beyenal, H. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol. Bioeng. 2012, 109 (10), 2651− 2662.
(19) Franks, A. E.; Glaven, R. H.; Lovley, D. R. Real-time spatial gene expression analysis within current-producing biofilms. ChemSusChem 2012, 5 (6), 1092−1098.
(20) Xu, M. Y.; Guo, J.; Kong, X. Y.; Chen, X. J.; Sun, G. P. Fe(III)- enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbial. Biotechnol. 2007, 74 (6), 1342−1349.
(21) Hong, Y. G.; Xu, M. Y.; Guo, J.; Xu, Z. C.; Chen, X. J.; Sun, G. P. Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl. Environ. Microbiol. 2007, 73 (1), 64−72.
(22) Read, S. T.; Dutta, P.; Bond, P. L.; Keller, J.; Rabaey, K. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol. 2010, 10, 98.
(23) Schrott, G. D.; Ordonez, M. V.; Robuschi, L.; Busalmen, J. P. Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens. ChemSusChem 2014, 7 (2), 598−603.
(24) Yang, Y.; Guo, J.; Sun, G.; Xu, M. Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12. Bioresour. Technol. 2013, 128, 472−478.
(25) Teal, T. K.; Lies, D. P.; Wold, B. J.; Newman, D. K. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl. Environ. Microbial. 2006, 72 (11), 7324−7330.
(26) Nielsen, L. P.; Risgaard-Petersen, N.; Fossing, H.; Christensen, P. B.; Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 2010, 463 (7284), 1071−1074.
(27) Yuan, Y.; Zhou, S. G.; Tang, J. H. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells. Environ. Sci. Technol. 2013, 47 (9), 4911−4917.
(28) Rabaey, K.; Verstraete, W. Microbial fuel cells: Novel biotechnology for energy generation. Trends. Biotechnol. 2005, 23 (6), 291−298.
(29) Chen, X.; Sun, G.; Xu, M. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J. Appl. Microbiol. 2011, 110 (2), 580−586.
(30) Wei, J. C.; Liang, P.; Cao, X. X.; Huang, X. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44 (8), 3187−3191.
(31) Solis, M.; Solis, A.; Perez, H. I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process. Biochem. 2012, 47 (12), 1723−1748.
(32) Hong, Y. G.; Guo, J.; Xu, Z. C.; Mo, C. Y.; Xu, M. Y.; Sun, G. P. Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolordtionis S12. Appl. Microbial. Biotechnol. 2007, 75 (3), 647−654.
(33) Li, S. L.; Freguia, S.; Liu, S. M.; Cheng, S. S.; Tsujimura, S.; Shirai, O.; Kano, K. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosens. Bioelectron. 2010, 25 (12), 2651−2656.
(34) Yang, Y.; Sun, G.; Guo, J.; Xu, M. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresour. Technol. 2011, 102 (14), 7093−7098.
(35) Picioreanu, C.; van Loosdrecht, M. C.; Curtis, T. P.; Scott, K. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 2010, 78 (1), 8−24.
(36) Franks, A. E.; Nevin, K. P.; Jia, H. F.; Izallalen, M.; Woodard, T. L.; Lovley, D. R. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: Monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci. 2009, 2 (1), 113−119.
(37) Renslow, R.; Babauta, J.; Majors, P.; Beyenal, H. Diffusion in biofilms respiring on electrodes. Energy Environ. Sci. 2013, 6 (2), 595− 607.
(38) Okamoto, A.; Hashimoto, K.; Nealson, K. H.; Nakamura, R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (19), 7856−7861.
(39) Sayama, M.; Risgaard-Petersen, N.; Nielsen, L. P.; Fossing, H.; Christensen, P. B. Impact of bacterial NO3(−) transport on sediment biogeochemistry. Appl. Environ. Microbial. 2005, 71 (11), 7575−7.
(40) Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 2003, 185 (5), 1485−1491.
(41) Nevin, K. P.; Kim, B. C.; Glaven, R. H.; Johnson, J. P.; Woodard, T. L.; Methe, B. A.; DiDonato, R. J.; Covalla, S. F.; Franks, A. E.; Liu, A.; Lovley, D. R. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PloS ONE 2009, 4 (5), e5628.
(42) Virdis, B.; Read, S. T.; Rabaey, K.; Rozendal, R. A.; Yuan, Z. G.; Keller, J. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresour. Technol. 2011, 102 (1), 334−341.
(43) Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; ByrneBailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D. Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl. Environ. Microbial. 2011, 77 (21), 7633−9.
(44) Liu, Y.; Bond, D. R. Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes. ChemSusChem 2012, 5 (6), 1047−1053.
生物膜的呼吸系统和生理层次中的电子受体的依赖性——摘要、介绍
生物膜的呼吸系统和生理层次中的电子受体的依赖性——材料和方法